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Abstract
The ion-induced formation of nanometer-scale ripples on semiconductors, long known as the
sputter erosion surface instability, is explained using a coupled atomistic-continuum framework.
Molecular dynamics simulations of individual medium energy ion impacts on an amorphous
silicon target show that the average effect of an incident ion is to leave an ångström-scale
crater-like impression on the surface, complete with a crater rim. The summation of many such
impacts on a micron-scale surface, combined with the smoothing effect of surface diffusion,
leads to the formation of surface ripples aligned perpendicular to the projected ion beam
direction. The same numerical approach can be used to evaluate the standard analytical model
for this process, known as the Bradley–Harper model. Both Bradley–Harper surface evolution
and the atomistically determined crater function surface evolution are computed over time
under conditions similar to those for known experimental data. The results show that the surface
mass rearrangement associated with the finite atomistic crater rims explains a key experimental
observation, ripple amplitude saturation, which cannot be accurately explained using the
Bradley–Harper model or any other known numerical or analytical model for the sputter erosion
surface instability.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Regular, quasi-periodic structures or patterns are formed on
a wide variety of solids like semiconductors, metals and
oxides by ion bombardment at a wide range of experimental
conditions [1]. On semiconductor surfaces of interest like
silicon and germanium, these surface patterns are nanometer-
scale structures, typically with a peak-to-valley amplitude
between 0 and 10 nm and a periodicity between 30 and
300 nm [2–5]. In experiments, the solid surfaces are
often nominally flat before ion bombardment by a nearly
homogeneous ion beam [6]. For this reason, the quasi-periodic
nanometer-scale structures are often called self-organized
nanostructures. The patterns are created by the ion-surface
interactions and due to processes like surface diffusion and
viscous flow that occur at or near the surface [6, 7].

1.1. Experimental observations

In pattern formation studies, commonly varied experimental
conditions include (i) beam incidence angle, (ii) target

temperature, (iii) ion flux and fluence, and (iv) ion beam
energy [8]. Other factors that are thought to influence surface
evolution include surface crystallinity/structure, surface
chemistry [9] and beam divergence [8].

Ripple formation has been observed on some materials at
a wide range of incidence angles. In the case of silicon targets,
it is typically observed between 0◦ and 30◦ off-normal beam
incidence angles [5, 10] at less than 2 keV energy ranges. In
GaAs, ripple formation has been observed between 30◦ and
60◦ beam angles. In other materials like SiO2, Cu and InP, the
formation of ripples or dots has been documented in the 0◦–75◦
ranges [4, 11–15, 7].

Experimental observations on semiconductors and metals
suggest two temperature regimes that give rise to two
different ripple characteristics. At low temperatures (typically
T < 200 ◦C), the ripple wavelength is observed to be
independent of temperature for both amorphous and crystalline
materials; whereas, at high temperatures (T > 200 ◦C),
the ripple wavelength follows an Arrhenius law, either
exp(− E

2kBT ) or exp(− E
4kBT ), suggesting a thermally activated
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mechanism. Currently, the temperature dependence of the
ripple wavelength is best understood in the higher temperature
regime. Bradley and Harper suggest exp(− E

2kBT ) due to a
surface diffusion based smoothing effect, while Erlebacher
and Aziz suggest exp(− E

4kBT ) due to an additional effect
of adatom migration/annihilation mechanism [16, 2]. In
the low temperature regime, a variety of mechanisms have
been suggested to explain the temperature independence of
ripple wavelength [7, 8]. Some of these mechanisms include
nonlinear effects such as ion-induced surface diffusion, a
mechanism that depends only on the ion beam and target
properties like ion range and straggle [6, 8, 17].

The effect of flux dependence has also been studied
extensively in the literature [8, 16, 18]. The typical flux ranges
that are considered in the experiments range from 1013 to
1016 ions cm−2 s−1 and the total fluences that are considered
are in the range 1015–1018 ions cm−2. The roughness (peak-
to-valley amplitude of the patterns) is known to increase as the
square of the flux. The roughness is also known to increase
at low fluences and saturate at higher fluences [5, 2]. The
ripple wavelength is reported to be independent of ion flux in
most of the studies [6, 16]; however, a systematic decrease
in ripple wavelength with increasing ion flux has also been
reported [8, 16].

Other beam characteristics like ion beam energy or beam
divergence are also known to influence the ripple wavelength.
It has been reported that the ripple wavelength increases
linearly with increasing ion energies [19]. The effect of
crystalline and amorphous interfaces on pattern formation have
also been studied widely [20]. Pattern formation mechanisms
in crystalline materials are affected by mechanisms such
as anisotropic diffusivity [15], the effect of step surfaces
and the Ehrlich–Schwöebel mechanism [21]. In amorphous
materials, a viscous flow migration of defects has also been
suggested [22, 3, 10]. Surface chemistry and strain is also
known to affect pattern characteristics [9].

An increase in random roughness of the surface due to ion
bombardment, called kinetic roughening, has been observed
on targets like graphite [23], silicon [5], and germanium [24].
No periodic patterns are observed before or after the random
roughening of the surface. The experimental conditions
like temperature or beam incidence angles determine whether
surface patterns are created or if the surface randomly
roughens. The mechanisms that lead to kinetic roughening
have been studied very widely [25, 26], especially in the
context of surface evolution due to ion bombardment [8]. The
section 1.2 presents a summary of the conventional theories
of surface evolution. In subsequent sections we introduce and
discuss a new multiscale method, called the crater function
method, to study surface evolution. The crater function method
does not assume the development of surface patterns or a
randomly rough surface due to bombardment and, in principle
is capable of explaining observations of both ripple formation
and randomly rough surfaces.

1.2. Existing theories for surface evolution

Conventional theories of pattern formation can be classified
into three main categories: (i) theories that explain pattern

formation, (ii) theories that explain kinetic roughening and
(iii) theories that explain both pattern formation and kinetic
roughening in a single framework. In this section, conventional
pattern formation theories and their shortcomings are discussed
first. Conventional kinetic roughening theories are discussed
next. Combined theories, usually nonlinear and/or stochastic
extensions to the pattern formation theories, are described
subsequently.

Bradley and Harper formulate the first continuum theory
describing the formation of self-organized patterns [6].
According to the Bradley–Harper theory, which is a
deterministic and linear formulation, ion bombardment
roughens the surface by an incidence angle-dependent
sputtering. This roughening is countered by surface diffusion.

Ion impacts on a target surface energize atoms and create
a collision cascade resulting in displacement of atoms away
from their equilibrium positions [20]. The incoming atom loses
energy to target atoms and will come to rest when the kinetic
energy of the incoming atom is less than the potential energy
barriers [27]. Some atoms at the surface may receive sufficient
energy to overcome the surface binding energy and sputter.

During a collision cascade, the energy transferred to the
target atoms may result in the creation of vacancies and
recoils if the target atoms are displaced far enough from their
equilibrium positions. When the ion and the atom energies
are sufficient, the mean distances over which successive events
occur are greater than interatomic distances; the collision
cascade created by such displacements is then said to be
linear [20]. Using a Boltzmann transport equation approach,
Sigmund formulates a sputtering theory that describes the
shape and size of a collisional cascade. In Sigmund’s
sputtering theory, the collisional volume and the shape of
the constant energy contours in a linear cascade regime are
described as ellipsoids centered at the penetration depth. The
ellipsoid’s major axis is directed along the ion beam direction.
The number of atoms sputtered is related to the shape and size
of the collisional volume. As the incident direction changes,
the major axis changes; therefore, the collisional volume and
the constant energy contours change. This, as a result, leads to
variation of sputter yield with changing incidence angle. The
range of slopes of ripple structures observed experimentally
is small (typically less than 5◦–10◦). Using a first-order
expansion of sputter yield with respect to surface slopes,
Bradley and Harper first show that erosion rate is directly
proportional to surface curvature due to the variation in the
density of collisional ellipsoids with curvature in the linear
cascade regime.

The physical processes during ion bombardment on an
initially flat surface are described by Bradley and Harper as
follows. The surface erosion rate r = (x, h(x, t)), where x =
(x1, x2) represents spatial coordinates in a coordinate frame as
defined in figure 1 (with x1 along the projected direction of
the ion beam) and t represents time, is proportional to the total
energy available at that surface point due all ion impacts. Note
that figure 1 also shows a schematic of the differences between
an effective local angle θ and a global beam angle φbeam.

Using Sigmund’s sputtering theory, the energy available
at any point at r due to an impact at (x0, h(x0, t)), where

2



J. Phys.: Condens. Matter 21 (2009) 224018 N Kalyanasundaram et al

Figure 1. Schematic of the global beam angle and the local surface
angle for an ion arriving at the surface.

x0 = (x01, x02), is described by a Gaussian distribution
function so that

E(r) = ε

(2π)
3
2 σμ2

× exp

[
− (h − h0 − aP)

2

2σ 2
− (x1 − x01)

2 + (x2 − x02)
2

2μ2

]

(1)

where E(r) is the total energy available due to the ion impact at
r = (x, h(x, t)), x = (x1, x2), h = h(x, t), h0 = h(x0, t), ε is
the energy of an incident ion, aP is the penetration depth and σ

and μ represent material-dependent properties of the constant
energy ellipsoids, as shown in figure 2. Due to the assumption
that the erosion rate at any arbitrary point on the surface is
proportional to the sum total of energy available at that point
due to impact all impacts on the surface, the erosion rate is
calculated using the integral of energy available at the surface
due to an impact:

∂h

∂ t
∝

∫ ∫
dr E(r)�(r) (2)

where �(r) is a geometric correction to the uniform flux J due
to surface curvature.

A simplified expression obtained by linear expansion
of (2) describing the surface height at time t , or h(x, t), is

∂h

∂ t
= S1(θ)

∂2h

∂x2
1

+ S2(θ)
∂2h

∂x2
2

− B∇2∇2h (3)

where S(θ) = (S1(θ), S2(θ)) is proportional to the slope-
dependent sputter yield, the flux, and the area of the target. B is
the surface diffusion coefficient given by B = DsCγ /n2kBT
where γ is the surface energy density, kB is the Boltzmann
constant, T is the temperature, Ds is the surface diffusivity
and C is the concentration of mobile species which take part
in the surface diffusion. By linear stability analysis, it can
be shown that a dominant wavelength λmax manifests itself as
surface ripples at large times and is given by

λmax =
√

2B

S(θ)
(4)

where S(θ) = max(S1(θ), S2(θ)). If S1(θ) > S2(θ), then the
ripples are oriented along the 1-direction; otherwise, they are
oriented along the 2-direction.

Bradley and Harper attempt to explain experimental
observations of ripple rotation within the framework described
above. In the experiments, at near normal incidences the
ripples are oriented perpendicular to the projected ion beam.
At large angles off-normal, ripples are oriented parallel to the
projected ion beam direction. Bradley and Harper explain that
at near normal incidence angles, S1(θ) > S2(θ). Therefore,
the ripples are oriented along the 1-direction (perpendicular
to the projected direction of the ion beam). However, as θ

increases, S1(θ) decreases and S2(θ) increases. At large angles
off-normal, S1(θ) < S2(θ). This causes the ripples to rotate to
be oriented along the 2-direction.

Experimental studies of the temperature scaling of rip-
ple wavelengths correlate well with predictions using the
Bradley and Harper mechanism in high temperature experi-
ments [8, 16, 2]. However, not all experimental observations
can be explained using this mechanism [8, 15, 21, 22, 3, 10].
Many theories, some introducing stochastic terms to equa-
tion (3), some accounting for the inherent nonlinearities in

Figure 2. Schematic of the Gaussian ellipsoids used in the Bradley–Harper approach. According to the Bradley–Harper mechanism, the
change in height at any point on the surface is proportional to the total energy that is available at that point due to all impacts.
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the problem, and some introducing both stochastic and non-
linear terms have been proposed to explain phenomena like
amplitude saturation of ripples [28, 29, 8, 27]. Various mod-
ifications to the S(θ) or an effective/modified B have been
proposed to account for shadowing and ballistic transport ef-
fects [29, 30, 27, 28]. All of these theories and corrections
explain the growth rate or the temperature dependence of λmax

using a Bradley–Harper-like framework based on the theory
of sputtering. Despite the success in applying the Bradley–
Harper theory and its modifications to many pattern formation
experiments, the theory still fails to predict certain observations
made in many of the cited experiments. The shortcomings of
the theory can be directly explained to be due to the exclusive
use of Sigmund’s sputtering theory—thereby neglecting mass
rearrangement—and also due to the assumption that surface
height change is proportional to the net energy deposited by
the ion.

The evolution equations that describe kinetic roughening
due to ion bombardment are usually either a modification of
the Kardar–Parisi–Zhang equation [25] or a modification of
the Kuramoto–Sivashinsky equation [8]. The Kardar–Parisi–
Zhang equation is given by

∂h

∂ t
= νx1

∂2h

∂x2
1

+ νx2

∂2h

∂x2
2

+ l1

2

(
∂h

∂x1

)2

+ l2

2

(
∂h

∂x2

)2

+ η(x, t)

(5)
where νx1, νx2, l1, and l2 are constant coefficients that
determine the asymptotic scaling laws of the randomly rough
surfaces. The signs of l1 and l2 determine whether the
surface roughness increases according to a power-law scaling
or logarithmic scaling of some characteristic length. The
η(x, t) term is a stochastic addition that models the random
arrival of ions at x.

One representation of the Kuramoto–Sivashinsky (KS)
equation, called the noisy KS equation [28], is given by

∂h

∂ t
= ν∇2h − K∇4h + η(x, t) (6)

where ν and K are constants that determine the scaling of
the surface roughness. The KS equation has been used
to interpret kinetic roughening in some ion bombardment
experiments [23, 31]. Despite the similarity between the KS
equation and the Bradley–Harper equation, the KS equation
cannot predict pattern formation because the coefficient of the
second derivatives of surface heights in the KS equation, ν, is
negative (8) whereas in (3), S(θ) is positive. The KS or the
KPZ equations alone fail to predict pattern formation that is
observed in many ion bombardment experiments. Therefore,
the kinetic roughening theories alone are insufficient to
describe surface evolution by ion bombardment.

Many theories that can predict both pattern formation and
kinetic roughening have been proposed. These theories are
invariably nonlinear and stochastic extensions to the Bradley–
Harper mechanism. For example, the evolution equation from
Cuerno’s unified theory is given as

∂h

∂ t
= S1(θ)

∂2h

∂x2
1

+ S2(θ)
∂2h

∂x2
2

− B∇2∇2h + l1

2

(
∂h

∂x1

)2

+ l2

2

(
∂h

∂x2

)2

+ η(x, t) (7)

where S1(θ), S2(θ), l1, l2, and K are constants. The η(x, t)
term models the random arrival of the ion at the surface. By
sweeping over all possible parameter-space for the constants
mentioned above, parameter regimes that separately describe
pattern formation or kinetic roughening are determined in these
theories. The unified theories make assumptions similar to the
Bradley–Harper theory; for example, the surface erosion rate
due to bombardment is assumed proportional to a Gaussian
energy deposition. Therefore, the unified theories have
shortcomings similar to the Bradley–Harper mechanism. The
nonlinearity allows explanation of some additional features
of surface amplitude evolution that cannot be explained by
the Bradley–Harper mechanism. For example, these theories
predict that surface amplitude saturates at long times; however,
the predicted saturation amplitude is at least an order of
magnitude higher than what is observed in experiments.

Due to the shortcomings associated with existing pattern
formation theories, a direct simulation method is presented
in this work. The new method proposed here is capable
of predicting both pattern formation and kinetic roughening.
The direct simulation method includes both sputtering and
rearrangement and does not make assumptions on the relation
between evolution rate and the shape and size of collisional
cascades.

2. Multiscale modeling method

The predictive capacity of the existing surface evolution
models that use Bradley–Harper like approaches is improved
here by incorporating the actual effects of individual ion
impacts into a new multiscale model. These ion impact effects
can be computed atomistically and are referred to as crater
functions. Details of the calculation of crater functions for ion-
bombarded silicon are presented in an earlier paper [32].

The multiscale simulation method has two stages: the first
stage computes an average response of the target surface to an
impact, called the crater function; the second uses the crater
functions along with the thermally activated surface diffusion
equation to evolve micrometer-scale surfaces over long times.
This separation of timescales is justified since a single ion
impact at typical experimental fluxes changes surface heights
over timescales of a few nanoseconds and length scales of
a few nanometers. Surface diffusion, on the other hand,
occurs at much larger length and timescales. Since these two
effects change the surface heights at such disparate length and
timescales, it is convenient to treat individual ion impacts to be
separate and independent from surface diffusion.

The evolution of the surface is thus governed by

∂h

∂ t
= g (x, θ (x) , t) − B∇2∇2h, (8)

where B∇2∇2h is the diffusive smoothing and g(x, θ(x), t) is
the net roughening due to ion bombardment. This equation
can be used to track surface evolution in the manner of the
Bradley–Harper governing equation (3), but by using our crater
functions to compute g(x, θ(x), t), it is possible to avoid
making assumptions about the shape of the collision cascade
and the relation of erosion rate to energy deposition.
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In previous work, simulations of silicon surface evolution
due to argon impacts are presented [32]. These simulations use
crater functions computed by molecular dynamics (MD). We
note that the multiscale method developed here can still be used
to predict Bradley–Harper like growth rates if crater functions
relevant to the Bradley–Harper like mechanisms are available.
For example, in considering only Sigmund sputtering, the
proportionality of erosion rate to Gaussian energy deposition
implies that the crater functions are Gaussian functions.
Using Gaussian functions in the multiscale method developed
here should still predict amplitude evolution as observed in
Bradley–Harper like theories. The crater functions may also
be found directly from experiments for some combinations of
ion, target and beam properties. For example, it is possible to
observe the shape of craters due to single cluster impacts on
surfaces [33]. The average crater shapes in these experiments
are the appropriate crater functions. Furthermore, it is possible
to alter the crater functions computed from MD or sputtering
theory and study surface evolution using these modified crater
functions. Studying surface evolution using modified crater
functions may provide insight into the effects of the MD craters
and into new mechanisms of surface evolution.

Since ion bombardment is fundamentally a discrete
process and one must numerically integrate equation (8) in time
to study surface evolution, it is most convenient to construct a
model in discrete form. First, if the impacts are independent
of each other, then g(x, θ(x), t) = f Ahion(x − xi

0, θ(x0))

where f is the ion flux and A is the projected surface area of
the target and the average response at x relative to x0 is called
the impact crater function: hion(x − xi

0, θ(x0)). The change
in h over time t is given by

h (x, t + t) = h (x, t)+
Nr∑

i=1

hion
(
x − xi

0, θ
(
xi

0

)) + hdiff,

(9)
where Nr is the number of random impacts on the simulated
Lx × L y surface in time t and xi

0 are the Nr random impact
points.

For simulations presented here, Lx1 = Lx2 = 1.011 μm.
It is assumed that the Nr consecutive impacts that occur within
each t do not interact directly. A typical number of impacts
per t time step is 5 × 105, and it can be shown that results
with impact numbers per time step of up to and greater than
this number are identical. By carrying out the simulation over
multiple t time steps, an experimentally measurable number
of ion impacts, typically more than 1010 on the 1.011 μm ×
1.011 μm surface, can be simulated.

The argument θ(x0) in the average crater function is the
effective local angle of incidence in hion(x − xi

0, θ(x0)),
which parameterizes how the shape of the crater depends on
the slope at the impact point. If an ion is incident on a flat
surface with zero slope in all directions, then θ(x0) is same as
the beam angle φbeam. When an ion is incident at a beam angle
φbeam, with a projected direction along the x1 axis, on a surface
patch that can be described by slopes m1 and m2 in the x1 and
x2 directions respectively around the impact point, the effective

local angle of incidence is given by

θ (x0) = arccos

⎛
⎝m1 sin(φbeam) + cos(φbeam)√

1 + m2
1 + m2

2

⎞
⎠ . (10)

The surface has an initial random roughness of 1 Å and
is discretized with 2048 × 2048 collocation points. Any grid
point (i, j) has an associated x = (x1, x2) Cartesian coordinate
and a surface height denoted by hi, j (t) = h(x, t) at time t , and
any grid point (i, j) can be an impact point.

The slopes m1 and m2 are calculated using a central
difference scheme about the point of impact. If the impact
coordinate indices are given by (i, j ), then

m1 = hi+1, j − hi−1, j

2x1
and m2 = hi, j+1 − hi, j−1

2x2
.

(11)
After the surface is updated due to the Nr random

ion impacts simulated by individual crater functions at the
appropriate local angles, the change due to surface diffusion,
hdiff, is solved over time t . The discrete Fourier transform
of h(x, t) to ĥ(k, t) is first carried out, where k = (k1, k2).
This gives

ĥdiff (k, t + t) = ĥdiff (k, t)

×
(

exp
[
−Bt

(
k2

1 + k2
2

)2
]

− 1
)

. (12)

To ensure isotropy despite the square domain, after each
t the h field is filtered such that ĥ = 0 for |k| > 2π N

L , where
L = 1.011 μm and N = 2048. The results can be shown to be
independent of t . The algorithm can also be validated against
analytic results by carrying out the surface evolution analysis
with B = 0 and a functional form of g(x, θ(x), t) such that an
analytical solution can be obtained; the surface diffusion part
of the evolution equation admits an exact solution, so that the
only error is due to computing the finite spectrum.

3. Results

Crater functions averaged from at least 500 ensem-
bles for each of a range of incidence angles (θ =
0◦, 4◦, 8◦, 12◦, 16◦, 20◦, 24◦, 28◦) [32], along with the numer-
ical surface diffusion analysis, are used to study surface evo-
lution of a micrometer-sized silicon target. An ion flux of
1015 ions cm−2 s−1 is used in the simulations. Again, when an
ion is incident on the surface, it changes the local surface height
and, therefore, it changes the effective local incidence angles
for subsequent arriving ions. An appropriate crater function
corresponding to the local ion incidence angle is used to incre-
ment the surface height after each impact. The crater functions
are available only for the set of discrete angles listed above;
however, the effective local incidence angle can be any real
value. An appropriate crater function is calculated by inter-
polating the available crater functions using piecewise cubic
splines in θ(x). At large angles, a linear runout boundary con-
dition is used in calculating the spline coefficients. In order to
ensure the projected direction of the ion beam used on micron-
sized surfaces is aligned along the projected direction of the ion

5
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Figure 3. Formation of nanometer-scale surface structures (ripples) on silicon. Surface structure for B = 5.684 × 10−34 m4 s−1 at
nondimensional times t∗ = (a) 0.496, (b) 1.241, (c) 6.207, (d) 12.414, (e) 18.621 and (f) 24.828. The projected direction of the 15◦ incident
ion beam is along the x1 direction. The shading shows surface height in nondimensional units.

beam used in the MD simulations, the crater functions are ro-
tated in the plane before incrementing the surface height. After
rotation, the crater functions are mapped to the computational
grid using bicubic interpolation.

Time and height are nondimensionalized as t∗ = t B( 2π
λ

)4

and h∗ = h 2π
λ

, respectively, where h is half the peak-to-
valley height. For the conditions that are simulated in this
work, the silicon surface evolves into a rippled nanometer-

scale surface pattern. Nanometer-scale structures obtained
using this method are shown in figure 3 at six different
nondimensional times for B = 5.684 × 1034 s−1, which is
similar to the diffusivity deduced by Erlebacher [2] for a silicon
surface. The structure observed in figure 3(f) corresponds
to 20 billion ion impacts on the initially unpatterned surface,
with Nr = 50 000. The maximum nondimensional amplitudes
of these structures are about 0.1. The orientation of ripples

6
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Figure 4. Rippled surface structures formed on silicon and their power spectrum: surface structure averaged along the x2 direction and its
power spectrum is shown at nondimensional times t∗ = ((a1), (a2)) 1.241, ((b1), (b2)) 12.414 and ((c1), (c2)) 24.828. The peak marked as A
in the power spectrum corresponds to the dominant wavenumber and peak A1 corresponds to the second dominant wavenumber.

is approximately perpendicular to the projected ion beam
direction. The amplitude of the two-dimensional structure
when averaged in the x2 direction is shown in figure 4 for three
nondimensional times along with the FFT power spectrum for
each ripple. Further, the two faces of any ripple shown in
figure 4 are observed to be asymmetric. A magnified view of
one of the ripples at time t∗ = 24.828 is shown in figure 5. The

magnitude of the ripple slope of the B′B face measured when
h = 0 is smaller (3◦) than that of the B′C face (6◦). Therefore,
the maximum effective local angle of incidence on the B′B face
is 18◦ and on the B′C face is 9◦ for a 15◦ beam incidence angle.
The differences in the slopes of B′B and B′C faces are not
due to shadowing because shadowing effects are not explicitly
taken into account. The difference in the slopes is due to

7
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Figure 5. Magnified view of the rippled surface structure averaged
along the x2 direction at nondimensional time t∗ = 24.828. The
magnitude of ripples slope on the B′B face when h = 0 is smaller
than that on the B′C face.

the bombardment of the steep face (B′C) at lower effective
incidence angles than the BC face. From the crater functions,
it is observed that the downstream driven mass rearrangement,
or downhill mass current, is reduced at lower incidence angles.
Thus, the differences in the crater functions used for the B′B
and B′C faces could lead to differences in the slopes of the two
faces. In figures 4(a2), (b2) and (c2), the peak in the power
spectrum marked A represents the dominant wavevector and
the peak marked A1 has the second largest contribution to the
power spectrum. It is observed that the wavelength of the ripple
is set at very low fluences (early times) and that the wavelength
does not change with increasing fluence.

The amplitude of these ripples increases very rapidly at
low fluences and saturates at large fluences. Figure 6 shows the
evolution of the nondimensional amplitude of the nanometer-
scale structures as a function of nondimensional time. The
h∗ are plotted in figure 6 for different diffusion coefficients
along with data obtained for argon bombardment of silicon
by Ziberi et al. The beam energy used in this study (500 eV)
and incidence angle (15◦) are within the range of experimental
values reported by Ziberi et al. However, because B is not
reported for the experiments, the dimensionless h∗ and t∗ are
calculated using a range of B values from B = 4 × 10−4

to 10 × 10−34 m4 s−1, in a similar range as the simulations.
The calculated growth rates and saturation amplitudes match
well with experiments. Figure 6 (curves a1 and a2) shows
agreement with Ziberi et al at the same incidence angle;
the saturation amplitude is also similar to that observed by
Erlebacher (2) at larger impact angles.

Earlier theories predict saturation amplitude at an order
of magnitude larger than experimentally observed, or they
predict no saturation at all [6, 29, 2]. Amplitude saturation
has been explained previously using nonlinear expansions [34].
However, in the present work, we link the accurate
prediction of the saturation amplitude to a microscopic
mechanism associated with mass rearrangement. As incidence

Figure 6. Surface height evolution: ((a)–(f)) simulation results; black
triangles: experimental data [5]. The simulation results are based on
(a1) MD crater function with B = 5.684 × 10−34 m4 s−1; (a2) actual
crater function with B = 9.094 × 10−34 m4 s−1; (b) 15◦ crater
functions for all impacts, (c) normal incidence crater function for all
impacts, (d) Gaussian crater functions with crater volumes equal to
volume of sputtered atoms only, (e) Gaussian crater function (GCF)
matching the depth (0.701 Å) and width of the normal incidence
crater functions, and (f) computed crater functions with rims
removed. The triangles represent the experimental scaled times and
saturated amplitudes; the error bars represent the variation due to
uncertainty of diffusion coefficients in the experiments.

angles increase, the MD crater functions show increasingly
preferential atom movement in the downstream direction. This
acts as a smoothing mechanism in the form of a downhill
mass flux, preferentially filling in the valleys and smoothing
peaks of any features, causing the peak-to-valley amplitude
to diminish. However, as the peak-to-valley amplitude
diminishes, the effective local angle of incidence at various
impact points diminishes. At lower angles, near the beam
angles considered here, the mass rearrangement is reduced.
Thus, reduced amplitude is associated with roughening of the
surface, and increasing of the peak-to-valley amplitude. A
balance between the roughening mechanisms and the mass
rearrangement driven smoothing mechanisms would cause
amplitudes to saturate.

Using Gaussian crater functions without rims, as in
Sigmund’s sputtering model which does not account for mass
rearrangement or pile-up in the form of crater rims, leads to
an increase in surface amplitudes larger than experimentally
observed surface amplitudes (figure 6, curves d and e).
Figure 6(d) shows the amplitude growth when the Gaussian
crater volume corresponds to volume of sputtered atoms only.
However, using no-rim Gaussian crater functions with craters
as large as the actual craters that account for both sputtering
and rearrangement, we observe a faster growth rate. Using
a normal incidence crater function for all impacts, that is,
ignoring the local incidence angle θ , leads to a slower growth
rate compared to the Gaussian case because of the presence
of a small crater rim in the normal incidence crater function
(figure 6, curve c). If we use the 15◦ crater function for all
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Figure 7. Surface height evolution at small times. This figure is a
magnified view of figure 4 for a smaller range of times. The crater
functions used to generate curves a–d are noted in figure 6. The
exponential growth rates for the different cases are: (a1) 0.514, (a2)
0.544, (b) 0.665, (c) 0.732, and (d) 0.596.

impacts, saturation is observed (figure 6, curve b). This is
possibly due to the asymmetric crater rims creating downhill
mass movement that increases with increasing incidence
angles.

Artificially removing the crater rim completely from all
the computed crater functions leads to the highest growth rate
observed (figure 6, curve f). This result is expected because
such a crater function not only has deep craters, but also scoops
out material preferentially from the downstream direction
compared to the upstream direction. Such a preferential
material removal mechanism would cause the ripple structures
to grow steeper by removing material from the region of large
slope (like regions near a saddle point between a peak and
a valley). In the cases without asymmetric rims, amplitude
saturation is not observed. Figure 7 shows a magnified view
of figure 6 for a smaller range of times. As seen from
figure 7, the exponential growth rates associated with the MD
crater functions and the Gaussian crater functions with crater
volumes equal to the volume of sputtered atoms are similar
at small times. The Bradley–Harper theory (Gaussian crater
functions) is known to predict the experimentally observed
growth rates at small times correctly [2, 35]; however, at large
fluences, either no saturation is observed (in linear theories) or
saturation is observed at an amplitude higher than experimental
amplitudes (in nonlinear theories) [2].

4. Summary and conclusions

In summary, a new computational method is developed
to use ion impact crater functions along with diffusion
modeling via a continuum model; the approach, which can be
validated against known analytical solutions, is used to study
mechanisms of surface evolution under low-to-medium energy
ion bombardment.

In particular, for bombardment of Si with 500 eV Ar ions
at temperatures low enough to preclude annealing, it is found

that the average ion impact causes a deep crater, significantly
deeper than expected from sputter erosion alone, surrounded
by a crater rim that becomes increasingly asymmetric for
impact angles further from normal. The crater functions are
computed by averaging over thousands of ensembles of MD
simulations of surface height change due to an ion impact.

Incorporation of these crater functions into a continuum
model that includes surface diffusion reproduces the types of
surface structures observed in experiments better than previous
models based on consideration of sputtering, but not other
mechanisms of mass rearrangement. The asymmetry of the
crater rims leads to amplitude saturation in agreement with that
observed experimentally.
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